Area Early View

Measuring sustainability across scales

By Joseph J. Bailey (@josephjbailey), University of Nottingham, UK.

Sustainability, meeting present demands without degrading environments in such a way that we jeopardise their ability to meet the needs of future generations, has been a topic of interest for a great many years as the world’s environments are converted and degraded like never before. Here, I briefly discuss an article in Area, on quantifying global sustainability, alongside a recent sustainability assessment of the world’s fifty ‘most prominent cities’.

The recently-published ARCADIS Sustainable Cities Index has attracted much attention in global and national media outlets (e.g. National Geographic, The Telegraph, The Guardian, Gulf Times, and the Australian and US media). In the list of fifty, European cities performed well (the top three being Frankfurt, London, and Copenhagen; Manchester and Birmingham were in the top 20), with the relatively new metropolises of Asia-Pacific (not including Seoul, Hong Kong and Singapore, which did rather well), the Middle-East and Central and South America lagging far behind. The USA’s cities generally fell in the middle of the list. This index combined three sub-indices of ‘sustainability’: social (‘people’), environmental (‘planet’), and economic (‘profit’). Cities’ positions sometimes changed quite a lot between these sub-indices.

Alexandra Park, London Borough of Haringey. Source: unedited from flickr; author: Ewan Munro. Click on the photograph to see the original.
Alexandra Park, London Borough of Haringey. Source: unedited from flickr (original). Author credit: Ewan Munro.

Elsewhere, in Area, Phillips (2015) recently described a “quantitative approach to … global ecological sustainability”, identifying the importance of population density at this national scale. The ten least ‘ecologically sustainable’ countries in this study had very high population densities (these are: the UK, Italy, Belgium, Trinidad & Tobago, Japan, India, Lebanon, Israel, Netherlands, and Singapore). Of these ten that are considered as ‘economically developed’ countries, the combination of high population density, high standard of living, and high GDP are thought to have caused negative environmental impacts that affect people in the present and will affect people into the future. The ‘economically developing’ countries in the list are highlighted as being so because of socio-economic (India) and environmental (Trinidad & Tobago) reasons, and a combination of environment and political instability (Lebanon and Israel).

We therefore see some cross-scale spatial mismatches between these independent studies, whereby countries with purportedly sustainable cities (top 20) have been ranked amongst the least sustainable countries (e.g. UK [London, Manchester, Birmingham], Belgium [Brussels], Netherlands [Amsterdam, Rotterdam], and Singapore). This highlights the importance of spatial scale in sustainability science, and translating this through to planning and management. Indeed, very different approaches will be required between city authorities and national governments to ensure sustainability.

Both of the focal publications in this blog post strive to advance our understanding of ‘sustainability’ by quantifying this concept and its many components, from environmental and ecological, to social and economic. Both studies are global in scope, but the approach, data, and scales of analysis differ, with one focussing on fifty cities and the other on countries. The results, in combination, demonstrate the complexities of sustainability science, especially those regarding geographic scale. They show that quantifying and understanding sustainability across all spatial scales (towns > cities > landscapes > regions > countries > globally) is vital for future planning, targeting of resources, and understanding what we need to do not only for the people of today, but also for the people of the near and distant future.

– – – – –

REFERENCES

books_icon Phillips, J. (2015). A quantitative approach to determine and evaluate the indicated level and nature of global ecological sustainability. Area, Early View. DOI: 10.1111/area.12174.

60-world2 ARCADIS (2015). Sustainability Cities Index. Available at: http://www.sustainablecitiesindex.com/.

1 comment

Leave a Reply or Comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: